Optical microsensors for analysis of microbial communities.

نویسنده

  • Michael Kühl
چکیده

Fiber-optic microprobes connected to sensitive light meters are ideal tools to resolve the steep gradients of light intensity and spectral composition that prevail in aggregates and surface-associated microbial communities in sediments, biofilms, and microbial mats. They allow for a detailed mapping of light fields and enable insights to the complex optical properties of such highly light-scattering and -absorbing microbial systems. Used in combination with microsensors for chemical species, fiber-optic irradiance microprobes allow for detailed studies of photosynthesis regulation and of the photobiology of microbial phototrophs in intact samples under ambient microenvironmental conditions of the natural habitat. Fiber-optic microprobes connected to sensitive fluorometers enable microscale fluorescence measurements, which can be used to map (i) diffusivity and flow; (ii) distribution of photosynthetic microbes, via their photopigment autofluorescence; and (iii) activity of oxygenic photosynthesis via variable chlorophyll fluorescence measurements. Furthermore, by immobilizing optical indicator dyes on the end of optical fibers, fiber-optic microsensors for temperature, salinity, and chemical species such as oxygen, pH, and CO2 can be realized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of microbial communities with electrochemical microsensors and microscale biosensors.

Electrochemical microsensors for O2, pH, H2S, H2, and N2O are now available commercially, thus it has become a relatively simple task to analyze the microenvironment in stratified microbial communities for several chemical species. In addition, sensors are available for the physical parameters diffusivity and flow, and based on knowledge about both transport processes and microdistribution of c...

متن کامل

Suitability of Contact-Free Oxygen Optical Microsensors for Measuring Respiration and Photosynthesis in Green Algae

Oxygen optical microsensors are a sensitive method to monitor oxygen production and consumption in soils, sediments, and aquatic systems. They have been used widely to analyze the activity and metabolism of aerobic organisms, also in ecotoxicological tests. We aimed to assess the suitability of a contact-free device to measure cell respiration and photosynthesis for future applications in ecoto...

متن کامل

Spatial and Temporal Oxygen Dynamics in Macrofaunal Burrows in Sediments: A Review of Analytical Tools and Observational Evidence

The availability of benthic O2 plays a crucial role in benthic microbial communities and regulates many important biogeochemical processes. Burrowing activities of macrobenthos in the sediment significantly affect O2 distribution and its spatial and temporal dynamics in burrows, followed by alterations of sediment microbiology. Consequently, numerous research groups have investigated O2 dynamic...

متن کامل

Optical Microsensors Integration Technologies for Biomedical Applications

This paper focuses on optical integration technology and its application in optical microsensors used in biomedical fields. The integration is based on the hybrid integration approach, achieving high performance, small size and weight, and lower cost. First, we describe the key technologies used in hybrid integration, namely passive alignment technology, low temperature bonding technology, and ...

متن کامل

Impact of zinc and nickel on oxygen consumption of benthic microbial communities assessed with microsensors.

In this study, the effect of zinc and nickel on oxygen consumption in sediments was determined using oxygen microsensors. Sediments from the southwest lagoon of New Caledonia, in the vicinity of the city of Nouméa, were incubated nearby in situ conditions and exposed to Zn and Ni concentrations of 20 and 60 mg l(-1). The depth distribution of oxygen consumption was estimated from the steady-sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Methods in enzymology

دوره 397  شماره 

صفحات  -

تاریخ انتشار 2005